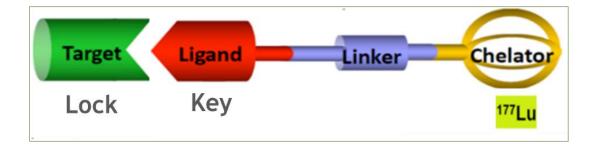


Molecular Targeting Technologies, Inc.


www.mtarget.com

EvaThera Theranostics

A novel targeted peptide radiotherapeutic platform for SSTR2 and $\alpha_{_{V}}\beta_{_{3}}$ integrin expressing tumors

Chris Pak
President & CEO
cpak@mtarget.com

EvaThera Platform

PLATFORM DRUG	PROBABLE INDICATIONS	TARGET RECEPTOR (high tumor density vs. normal organ expression)	LIGAND (agonist/antagonist/inhibitor, affinity/specificity, metabolic stability)	RADIONUCLIDES (emission)
EBTATE	NET, Hurthle cell thyroid, nasopharyngeal, pancreatic, renal and others		TATE - agonist, high affinity,	¹⁷⁷ Lu [low energy, short range (2.2mm) gamma particle] ²²⁵ Ac [very high energy, very short range (40-100μm), alpha particle]
	Upregulates PD-L1 expression, enhances immunotherapy efficacy. Targets glioblastoma multiforme, non-small cell lung, ovarian, breast, bone, prostate & others.	$α_v β_3$ integrin	RGD - inhibitor, high affinity, high specificity, stable	¹⁷⁷ Lu [low energy, short range (2.2mm) gamma particle] ²²⁵ Ac [very high energy, very short range (40-100μm), alpha particle]

EBTATE for Neuroendocrine Tumors

What are NETs?

- Heterogeneous group of tumors originating from the cells of endocrine and nervous system.
- ~80% of NETs overexpress somatostatin receptors (particularly SSTR₂).

NETs
Prevalence 35/100 k
Incidence 5.8/100k

<u>Foregut</u>

Lung, Thymus, Esophagus, Stomach, Duodenum, Pancreas <u>Midgut</u>

Small bowel, appendix, lleum, cecum, proximal colon <u>Hindgut</u>

Distal colon and rectum

Treatment options

- Surgery (curative vs debulking)
- Radiofrequency ablation
- Chemo-embolization
- Somatostatin analogue (hormonal treatment)
- Chemotherapy or other medical therapy (targeted kinase inhibitors)
- Radionuclide therapy

Opportunities for SSAs

- Diagnosis/staging through radiolabeled somatostatin analogs (SSA)
- Treatment of p-NETs with SSA like Sandostatin LAR (Novartis, market leader with US\$1.7bn sales in 2014) or Somatuline (Ipsen)
- 2019 Lutathera® approval (Novartis acquired AAA for \$3.9 Bn) marrying both SSA and radionuclide therapy

¹⁷⁷Lu-dotatate (Lutathera®)

- Lutathera® (177Lu-dotatate) received regulatory approval in the European Union (September 2017) and in the US (January 2018) against rare gastroenteropancreatic neuroendocrine tumors (NET)
- Sales of Lutathera® hit \$441 million in 2019 with a 31% jump in Q4 alone, indicating a strong growth trajectory for the radiotherapy.
 Analysts predict peak sales between \$1 billion and \$2 billion.
- Global NET market is projected at \$5.3 B by 2028 (Data Bridge)

Improving upon ¹⁷⁷Lu-dotatate

Rapid clearance

¹⁷⁷Lu-dotatate clears rapidly through the kidneys with a blood half-life of a few hours

Low response rate

19% GEP-NET patients show complete or partial response to ¹⁷⁷Ludotatate. Low complete remission rate (~1%)

Admin burden

Higher activity and multiple injections are needed for optimal therapeutic effect.

Safety

Multiple injections can cause high kidney toxicity and partial/high bone marrow toxicity. Amino acid infusion is needed to reduce toxicity causes nausea and vomiting

EvaThera Platform

Theranostics 2018, Vol. 8, Issue 3

735

Peptide

2018; 8(3): 735-745. doi: 10.7150/thno.23491

Research Paper

Evans Blue Attachment Enhances Somatostatin Receptor Subtype-2 Imaging and Radiotherapy

Rui Tian^{1, 2}, Orit Jacobson^{2⊠}, Gang Niu², Dale O. Kiesewetter², Zhantong Wang², Guizhi Zhu², Ying Ma², Gang Liu¹ and Xiaoyuan Chen^{2⊠}

Evans blue motif

Linke

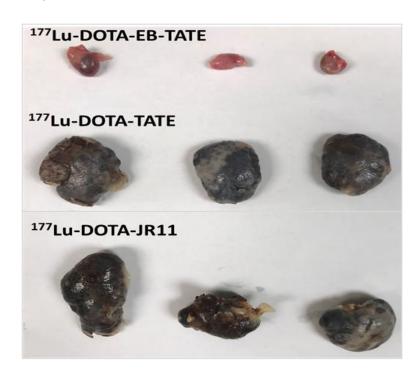
HO3S HH2 OH
N=N
NH HN
NH HN
Chelator

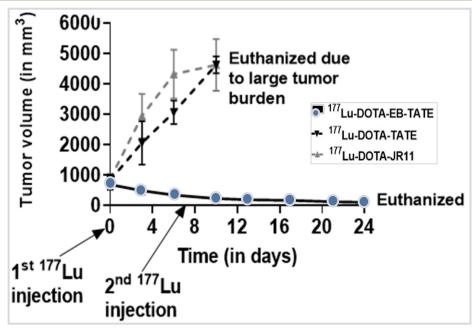
All technology covered under an exclusive global license from NIH to MTTI

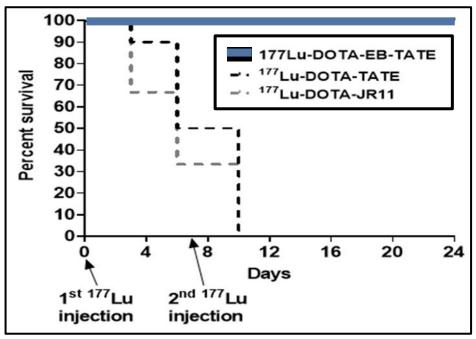
March 2021 news on EBTATE clinical studies

Peptide Receptor Radionuclide Therapy of Late-Stage Neuroendocrine Tumor Patients with Multiple Cycles of ¹⁷⁷Lu-DOTA-EB-TATE

Qingxing Liu^{1,2*}, Jie Zang^{1,2*}, Huimin Sui^{1,2}, Jiakun Ren^{1,2}, Hua Guo^{1,2}, Hao Wang^{1,2}, Rongxi Wang^{1,2}, Orit Jacobson³, Jingjing Zhang⁴, Yuejuan Cheng^{†5}, Zhaohui Zhu^{†1,2}, and Xiaoyuan Chen^{†3}






PRECLINICAL EFFICACY OF EBTATE VS. ¹⁷⁷Lu-DOTATATE in PANCREATIC CANCER

EBTATE treated AR42J mice responded to treatment after 2 wk post-therapy. Tumors of mice treated with ¹⁷⁷Lu-dotatate continued to progress and the mice had to be euthanized within 10 days.

Provided by Joanna Klubo-Gwiezdzinska, MD of NIDDK of NIH

EBTATE for Hürthle cell thyroid carcinoma (HTC)

- 3-5% of thyroid malignancies, ~1,600 in the US per annum.
- Poor, long-lasting remission and/or survival from conventional radioactive iodine (131) treatment, unlike non-HTC thyroid cancer.
- HTC patients have high SSTR2 expression and high uptake of ⁶⁸Ga-DOTA-TATE (SSTR2 Marker).
- In vivo mouse studies with EBTATE extended survival and reduced tumor size in animal models with high SSTR2 tumor expression (AR42J) but not with low SSTR2 (FTC133) expression. Confirmed significantly greater diagnostic and therapeutic efficacy vs. Lutathera or DOTA-JR11.
- NIH funded Phase II trial proposed mid-2022.

EBTATE Advantages

- In a head-to-head *in vivo* comparison, EBTATE showed improved anti-tumor efficacy versus ¹⁷⁷Lu-dotatate
- Early clinical data showed that EBTATE is safe and achieved objective responses after a single injection
- Multiple cycles of escalating doses of EBTATE seem to be well tolerated and were effective in tumor control.
- EBTATE should also target Hürthle cell thyroid cancer (an unmet medical need) and nasopharyngeal cancer (significant in SE Asia)
- EBTATE may not need pre-PRRT amino acid treatment.

EBRGD enhances immunotherapy efficacy

Premise

- Current checkpoint inhibitor immunotherapies have low response rates.
- Multiple studies on radiation, external beam therapy, chemotherapies, vaccines...show PD-L1 upregulation enhances immunotherapeutic response.

Hypothesis/Study

- ¹⁷⁷Lu-EBRGD targets and kills tumors
- Radiation upregulates PD-L1
- Mice with colorectal cancer xenografts were treated with ¹⁷⁷Lu-EBRGD and anti-mouse PD-L1 mAb.

Results

...EBRGD targeted radionuclide therapy in combination with an anti PD-L1 mAb...

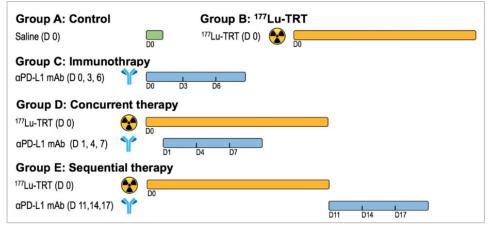
- led to an acute increase in PD-L1 expression on T cells, and
- EBRGD in combination with $\alpha PD-L1$ mAb stimulated the infiltration of CD8+ T cells,
- which improved local tumor control, overall survival and protection against tumor rechallenge.

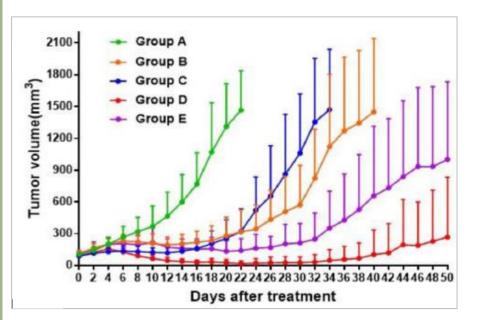
EBRGD enhances immunotherapy efficacy

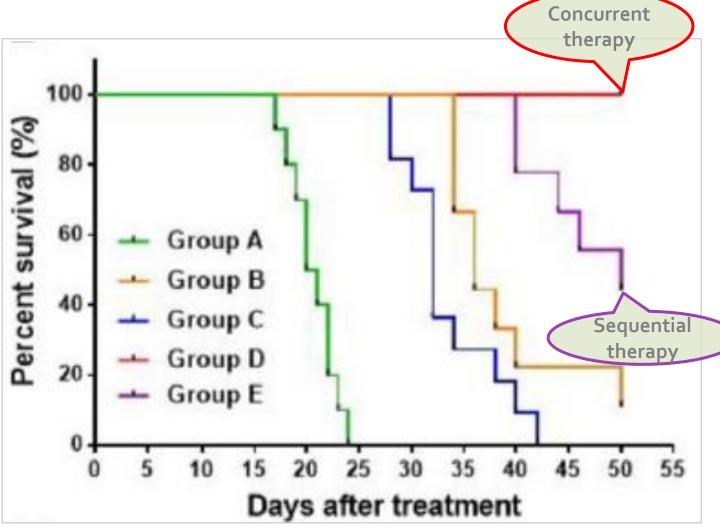
Theranostics 2019, Vol. 9, Issue 25

7948

2019; 9(25): 7948-7960. doi: 10.7150/thno.39203

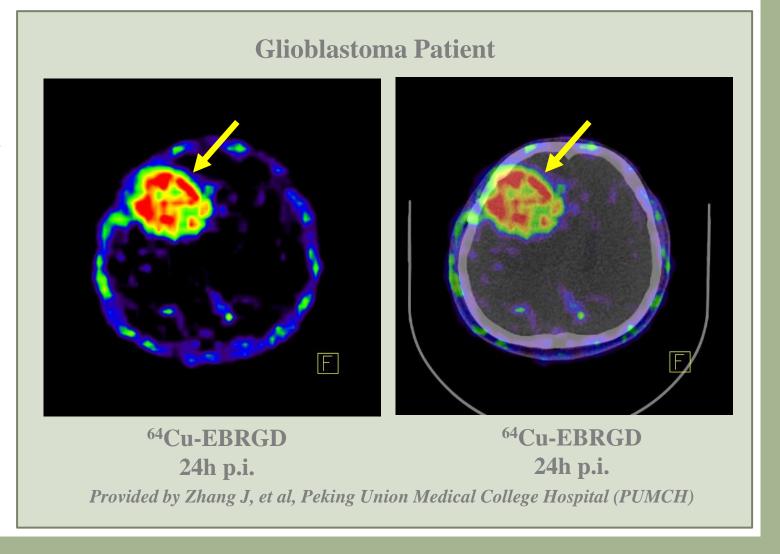

Research Paper


Integrin $\alpha_v \beta_3$ -targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy


Haojun Chen¹*, Liang Zhao²*, Kaili Fu², Qiuming Lin², Xuejun Wen³, Orit Jacobson⁴, Long Sun¹, Hua Wu¹, Xianzhong Zhang³⊠, Zhide Guo³⊠, Qin Lin²⊠, Xiaoyuan Chen⁴⊠

...TRT [EBRGD targeted radionuclide therapy] led to an acute increase in PD-L1 expression on T cells, and TRT in combination with α PD-L1 mAb stimulated the infiltration of CD8+ T cells, which improved local tumor control, overall survival and protection against tumor rechallenge.

EBRGD enhances immunotherapy efficacy



https://www.ncbi.nlm.nih.gov/pubmed/31695808

 64 Cu-EBRGD diagnostic targets integrin $\alpha v\beta 3$ in GBM (Clinical summary)

Axial PET and PET/CT slices of glioblastoma multiforme (GBM) patient injected with ⁶⁴Cu-EBRGD at 24 h p.i.

Summary

EvaThera platform

- broad application across targeting peptides, indications, radionuclides...
- safe & effective
- excellent IP protection

EBTATE

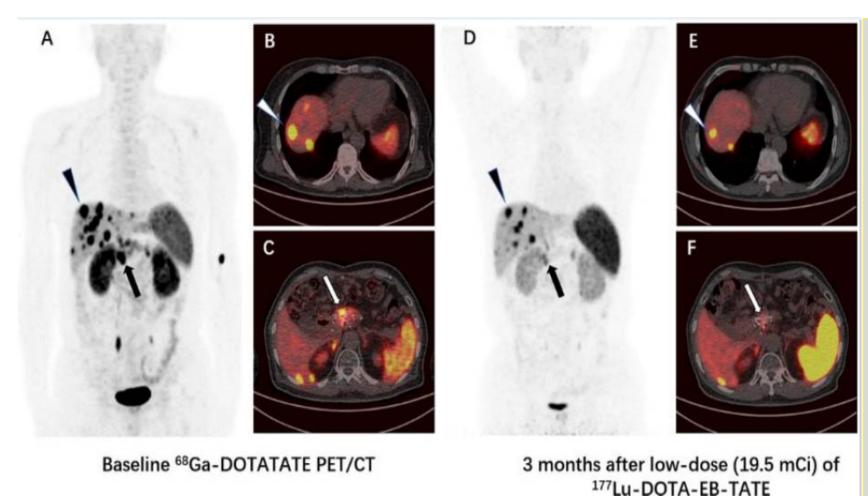
- demonstrated improvement over ¹⁷⁷Lu-dotatate
- significant market potential
- clinical trials are in progress

EBRGD

- enhances immunotherapy efficacy
- demonstrated GBM targeting

Contact

MTTI is seeking corporate partners to advance the EvaThera platform for two orphan drugs targeting Hürthle cell thyroid cancer and glioblastoma multiforme indications

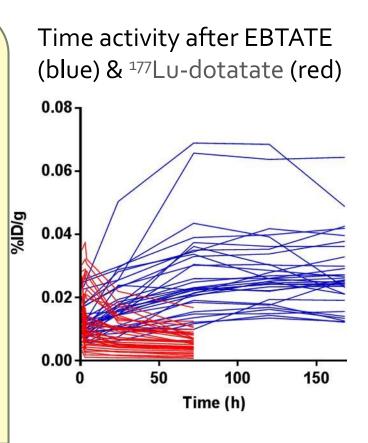

Business development contact for EvaThera

Chris Pak
President & CEO
COO/CFO

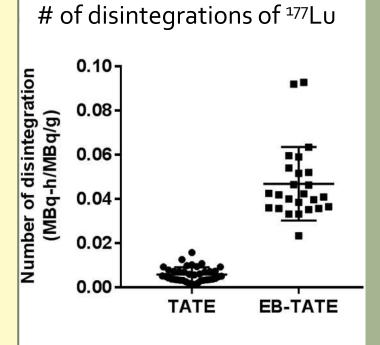
<u>cpak@mtarget.com</u> <u>jli@mtarget.com</u>

Tel: 484-557-0483 (mobile) Tel: 610-738-7938

Tumor size reduction observed in patients after a single injection of EBTATE (20 mCi) (One tenth dose of ¹⁷⁷Lu-dotatate of 200 mCi)

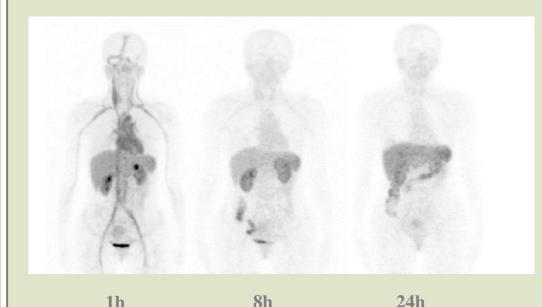

Comparison of ⁶⁸Ga-DOTA-TATE PET/CT images:

- immediately before (A-C)
- 3 months after (D-F)

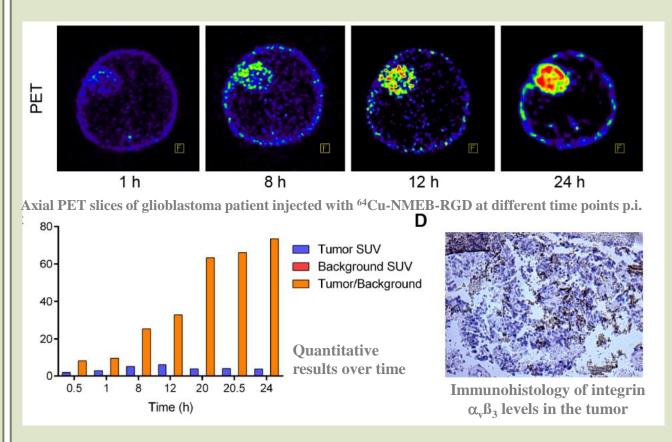

The SUV_{max} of the primary tumor in pancreas decreased from 26.7 to 13.0 (arrow), and the SUV_{max} of the highest-uptake liver metastasis decreased from 50.6 to 28.6 (triangle).

EBTATE (MTTI) demonstrated improved PK/PD vs. ¹⁷⁷Lu-dotatate

 EBTATE reached peak slower, and had a prolonged plateau compared to ¹⁷⁷Lu-dotatate


EBTATE showed
 800% increase of lesion radiation counts vs.
 Lutathera

⁶⁴Cu-EBRGD (Clinical summary)


Healthy human volunteers

Three healthy volunteers (2 males and 1 female) underwent whole-body PET acquisitions at 1, 8 and 24 h time points after bolus injection of 64 Cu-EB-RGD ($101.1 \pm 9.3, 92.5 - 111$ MBq).

Representative coronal PET image of healthy human volunteer injected with ⁶⁴Cu-NMEB-RGD at 1, 8, and 24 h p.i.

Glioblastoma Multiforme Patient

Provided by Zhang J, et al, Peking Union Medical College Hospital (PUMCH)