

Molecular Targeting Technologies, Inc.

Advancing Precision Medicines – Transforming the lives of patients burdened with severe and life-threatening diseases

Chris Pak President & CEO <u>cpak@mtarget.com</u>

www.evathera.com www.mtarget.com

PIPELINE

PRODUCT	TARGET	INDICATION		PHASE I	PHASE II	PHASE III
		THERAPEUTICS				
Rabies mAb	Rabies antigen	Rabies		OUTLICENS	SED - LAUNCHED	()
BPRDP056	Phosphatidylserine	Multiple cancers	0	UTLICENSED		
EBTATE [™]	SSTR2	Neuroendocrine tumors		(
	SSTR2	Hürthle Cell Thyroid cancer	P	PHASE I/II		
	SSTR2	Nasopharyngeal cancer	P	PHASE I/II		
EBRGD [™]	integrin $\alpha v \beta_3$	Non-small cell lung cancer				
	integrin αvß₃	Glioblastoma Multiforme				
ExoBlock	Phosphatidylserine	Advanced melanoma immunotherapy				
		DIAGNOSTICS				
^{99m} Tc-glucarate	Cell death	Misc. cancers, cardiac trauma				
TDURA	Cell death	Colorectal cancer		(
¹⁸ F-fluoroglucaric acid	Cell death	Misc. cancers, cardiac trauma				
CypH-11 Spray	NIR guided surgery	Ovarian/Peritoneal cancer				
PSVue-Eye Drops	Cell death	Ocular diseases				

E	VaTheraTM Peptide Receptor Radior	Platform nuclide Therapy (PRRT	-)	Tumor Specific Receptor	Tumor Targeting Molecule
PLATFORM DRUG	PROBABLE INDICATIONS	TARGET RECEPTOR (high tumor density vs. normal organ expression)	LIGAND (agonist/antagonist/ affinity/specificity, n stability)	/inhibitor, netabolic	RADIONUCLIDES (emission)
EBTATE	NET, Hurthle cell thyroid, nasopharyngeal, pancreatic, renal and others	Somatostatin receptor type 2 (SSTR-2)	TATE - agonist, high high specificity, stab	affinity, le	¹⁷⁷ Lu [low energy, short range (2.2mm) beta particle] ²²⁵ Ac [very high energy, very short range (40-100μm), alpha particle]
EBRGD	Targets glioblastoma multiforme, non-small cell lung, ovarian, breast, bone, prostate & others. Enhances immunotherapy efficacy.	$\alpha_v \beta_3$ integrin	RGD - inhibitor, high high specificity, stab	affinity, le	 ¹⁷⁷Lu [low energy, short range (2.2mm) beta particle] ²²⁵Ac [very high energy, very short range (40-100μm), alpha particle]

EvaTheraTM **Theranostics**

MTTI's radiotherapeutic/radiodiagnostic platform

EBTATETM (¹⁷⁷Lu-DOTA-EB-TATE)

Targeted peptide radiotherapeutic for SSTR2 expressing tumors

Peptide Receptor Radionuclide Therapy (PRRT) – ¹⁷⁷Lu–DOTA–TATE

Olmo-Garcia et al. Cancers (Basel) 2022;14(3):584

Peptide Receptor Radionuclide Therapy – EBTATE™

 \Box EB – Albumin ED₅₀ ~2.5 μ M

- Circulatory reservoir
- Reduced renal
 - Clearance
 - Toxicity

TATE – SSTR2 ED₅₀ ~ 75 nM
 Increased tumor uptake

Figure 1. Schematic design of radiopharmaceutical complex.

Adapted from: Olmo-Garcia et al. Cancers (Basel) 2022;14(3):584

EBTATE is the next generation neuroendocrine tumor (NET) radiotherapeutic from a new, rationally designed chemical structure

- Early clinical data (N=57 patients) showed that EBTATE is safe and achieved objective responses after a single injection
- 3-year follow-up showed stable NET disease with progression-free survival of 43 months after three cycles of ¹⁷⁷Lu-DOTA-EB-TATE
- Head-to-head *in vivo* comparisons of EBTATE in NET showed improved antitumor efficacy versus standard of care
- Multiple cycles of escalating doses of EBTATE (N=32 patients) against NET seem to be well tolerated and were effective in tumor control
- EBTATE should also target other SSTR2 expressing tumors (Hürthle thyroid cancer [HTC], nasopharyngeal cancer [NPC],...)

EBTATE[™] vs standard of care (SOC) – preclinical results*

HN

HN

NH

- Prolonged circulation half-life
- Stronger tumor uptake in thyroid, colorectal and NSCLC cell lines

NH₂ OH

SO₂H

 $N \equiv N$

• Better tumor control in NSCLC and pancreatic tumors

HO₃S

- Biodistribution parallels stronger uptake
- Comparable safety

*NET medical benefits are described in the Clinical Results section

Better preclinical tumor uptake and treatment response*

Preclinical – xenograft tumor uptake	EBTATE	SOC
Non small cell lung cancer (NSCLC)-% ID/gram	80%	4%
Pancreatic cancer AR42J-standardized uptake value	15.16	3.53
Follicular thyroid (Hürthle cell)-standardized uptake value	4.8	0.28

Preclinical – treatment response	EBTATE	SOC
Non small cell lung cancer (NSCLC)	100% at 18.5 MBq	0% at 18.5 MBq
Pancreatic cancer-AR42J	Protects mice up to 24 days	Mice euthanized in 10 days due to tumor size
Pancreatic cancer – AR32J with Y-90	100% survival to 90 days with at 3.7 & 7.4 Mbq	No survival at 35 days with 7.4 Mbq

*see the following slides 11 - 15

EBTATE[™] vs SOC - Preclinical

SUPERIOR TUMOR UPTAKE OF EBTATE -- murine NSCLC model

Results: Uptake of ¹⁷⁷Lu–DOTA-EB–TATE

(b) was significantly higher than ¹⁷⁷Lu-DOTA-TATE (f) in the tumor.

Uptake at the target was blocked as shown in (c).

(a & b) ¹⁷⁷Lu–DOTA-EB–TATE without blocking at 1 and 24 h post injection and (c) with blocking (125 μg of DOTA-EB–TATE co-injected with the dose) at 24 h pi. (e & f) ¹⁷⁷Lu–DOTA–TATE without blocking at 1 and 24 h post injection and (g) with blocking (125 µg of DOTA–TATE) at 24 h pi.

Bandara et al. Bioconjugate Chem 2018; 29(7): 2448-2454

A low dose of EBTATE will clear slowly and stay in the tumor longer In vivo biodistribution studies in A427-7 (NSCLC) bearing mice

EBTATE shrinks NSCLC tumors, SOC does not

¹⁷⁷Lu-DOTA-EB-TATE (¹⁷⁷Lu-DMEB-TATE) tumor therapy: tumor growth in athymic nude mice with A427-7 xenografts *Bandara et al. Bioconjugate Chem 2018; 29(7): 2448-2454*

EBTATE[™] vs SOC - Preclinical

Pancreatic cancer tumors responded to EBTATE, those treated with ¹⁷⁷Lu-DOTA-TATE did not

PRECLINICAL EFFICACY OF EBTATE vs. ¹⁷⁷Lu-DOTA-TATE in Pancreatic cancer AR42J MOUSE Model <u>Thakur et al. Clin Cancer Res 2021; 27(5): 1399-1409</u>

Pancreatic tumor volume and survival of mice injected with ⁹⁰Y-TATE or ⁹⁰Y-EB-TATE show superior effect with EB

Tian et al. Theranostics 2018; 8:735-745

Clinical Comparison: EBTATE vs SOC

Safety, Pharmacokinetics, and Dosimetry of a Long-Acting Radiolabeled Somatostatin Analog ¹⁷⁷Lu-DOTA-EB-TATE in Patients with Advanced Metastatic Neuroendocrine Tumors *Zhang et al. J Nucl Med 2018; 59: 1699-1705*

of Disintegrations of ¹⁷⁷Lu Time Activity After EBTATE[™](blue) & В DOTA-TATE (red) Α 0.08-EBTATETM 0.10-Number of disintegration (MBq-h/MBq/g) reached peak **EBTATE**TM 0.06 0.08 slower, and had showed 7.9-fold %ID/g a prolonged 0.06-0.04 increase of plateau lesion radiation 0.04compared to 0.02 counts vs TATE 0.02-¹⁷⁷Lu-DOTA-TATE 0.00-(TATE) 0.00 50 150 100 0 TATE **EB-TATE** Time (h)

Tumor size reduction in patients after a single injection of EBTATETM

Wang et al. Theranostics 2018; 8(12): 3308-3316

PET/CT response (EORTC criteria)-68Ga-DOTATATE

Liu et al. J Nucl Med 2021; 62(3): 386-392

Efficacy	Group A (1.17 GBq) N=12	Group B (1.89 GBq) N=6	Group C (3.97 GBq) N=14
CR (%)	0	0	0
PR (%)	50	50	42.9
SD (%)	16.7	33.3	28.6
PD (%)	33.3	16.7	28.6
DRR (%)	50	50	42.9
DCR (%)	66.7	83.3	71.5

Patients seemed to tolerate ¹⁷⁷Lu-DOTA-EB-TATE well, even up to 3.97 GBq/cycle. The overall disease control rate, as well as the percentage decrease in tumor SUVmax, were highest with a 1.89 GBq dose, followed by 3.97 and 1.17 GBq.

3-year follow up: Patient treated with ¹⁷⁷Lu-DOTA-EB-TATE (3 cycles) with cumulative administered activity of 12.4 GBq Jiang et al. Theranostics 2022; 12(5): 6437-6445

⁶⁸Ga-DOTA-TATE PET/CT diagnostic tracking at 3-year follow-up showed stable disease (E, MIP image; F, fused PET/CT) with progression-free survival of 43 months from the first cycle of ¹⁷⁷Lu-DOTA-EB-TATE PRRT

19

Progression-free survival (PFS)

EBTATE (3 cycles) is as effective as ¹⁷⁷Lu-DOTA-TATE (4 cycles) (3-year study)

DRUG	PATIENTS	DOSE (GBq)	Cycles	PFS	Authors
EBTATE	29	3.7	3	36*	Jiang et. al.
SOC	74	7.4	4	26	Ezzidin et. al.
SOC	443	7.4	4	29	Barbander et. al.
SOC	104	7.4	4	37	Kennedy et. al.
soc	Multiple 74	Л	26.27	Others, Kwekkeboom,	
300	studies	/.4	4	20-57	Sabet, Paganelli et. al.

* after a median follow-up of 46 months. Jiang et al. Theranostics 2022; 12(5): 6437-6445

EBTATE Safety: Low, long-term hematotoxicity, nephrotoxicity and hepatotoxicity (CTCAE 5.0) among 29 patients similar to SOC*

Jiang et al. Theranostics 2022; 12(5): 6437-6445

Toxicity	Grade 1	Grade 2	Grade 3	Grade 4
	(# of patients)	(# of patients)	(# of patients)	(# of patients)
Leukopenia	1	3	0	0
Thrombocytopenia	1	0	1	0
Anemia	1	2	0	0
Nephrotoxicity	0	0	0	0
Hepatoxicity	1	0	0	0

*Danthala et al. 177Lu-DOTA-TATE therapy in patients with neuroendocrine tumors: 5 years' experience from a tertiary cancer care centre in India. Eur J Nucl Med 2014; 41: 1319-1326

EBTATE™ Competitive Environment

Lutathera [®] is the current Standard of	Sponsor	Drug	Status	Dose (mCi)	Partial response	Radio- nuclide
Care (SOC)	Generic (~20) Octreotide	Commercial	N/A	4%	N/A
	Novartis	Lutathera	Launched	200	19%	Lu-177
	ITM	Lu-177-Edotreotide	Phase III	200	54%	Lu-177
	MTTI	EBTATE	Phase I/II	50	50%	Lu-177
	Point	PNT 2004	Phase I			Lu-177
partial response at	Radiomedix Orano Med	/ AlphaMed	Phase II			PB-212
other reported	Rayze Bio	RYZ101	Phase Ib/II			Ac-225
products	ViewPoint	VMT-a-NET	Phase I			Pb-203

Differentiating EBTATE as an anticancer agent

- EBTATE is the next generation of NET drugs, supported by strong IP and efficacy
- Value is tied to product performance and safety vs other anticancer agents, not whether it is a targeted drug or the choice of isotope
- EB imparts unique benefits to any targeting peptide
- MTTI owns IP that includes ²²⁵Ac and other radionuclides to 2037
- Real World Evidence from our China studies in 57 patients (which supported our IND – February 2021) and ongoing US and Asian trials position us well for Phase II & III trials

EBTATETM (¹⁷⁷Lu-DOTA-EB-TATE) Conclusions

- 3-year follow-up showed stable disease with progression-free survival of 43 months after three cycles of ¹⁷⁷Lu-DOTA-EB-TATE (N=30 patients)
- In a head-to-head *in vivo* comparison, EBTATE showed improved anti-tumor efficacy versus DOTA-TATE
- Early clinical data showed that EBTATE is safe and achieved objective responses after a single injection
- Multiple cycles of escalating doses of EBTATE (N=32 patients) seem to be well tolerated and were effective in tumor control
- EBTATE should also target Hürthle cell thyroid cancer and nasopharyngeal cancer

EvaTheraTM **Theranostics**

MTTI's radiotherapeutic/radiodiagnostic platform

EBRGDTM (¹⁷⁷Lu-DOTA-EB-RGD)

Targeted peptide radiotherapeutic platform for $\alpha_v \beta_3$ expressing tumors

Peptide Receptor Radionuclide Therapy – EBRGD™

Adapted from: Olmo-Garcia et al. Cancers (Basel) 2022; 14(3): 584

EBRGD, from the new, rationally designed chemical structure, H₂N⁻ prolongs half-life and improves targeting to $\alpha\nu\beta$ 3 expressing tumors

- Conjugation of EB to DOTA/NOTA-RGD resulted in a significant increase in tumor uptake and tumor retention as shown with ¹⁷⁷Lu/⁹⁰Y/⁶⁴Cu
- A single dose of ¹⁷⁷Lu-EB-RGD (18.5 MBq) completely eradicated tumors in PDX $\alpha_{v}\beta_{3}$ NSCLC mouse model with no sign of tumor recurrence
- Concurrent blockade of PD-1/PD-L1 combined with ¹⁷⁷Lu-EB-RGD improved overall survival and long-term tumor control in a mouse colorectal cancer xenograft model
- ⁹⁰Y-EB-RGD increased blood half-life, enhanced glioblastoma multiforme (GBM) tumor uptake, and improved survival in murine GBM model
- ⁶⁴Cu-EB-RGD showed prolonged circulation half-life and enhanced tumor accumulation in GBM patients

¹⁷⁷Lu-EB-RGD vs ¹⁷⁷Lu-RGD SPECT imaging in $\alpha_{v}\beta_{3}$ positive PDX-NSCLC

Tumor volume regression and improved survival of αvβ₃+ PDX (NSCLC) mice treated with ¹⁷⁷Lu-EB-RGD

EBRGD enhances immunotherapy efficacy in colorectal cancer

Chen et al. Theranostics 2019; 9(25): 7948-7960

GBM tumor volume regression, improved survival of mice injected with increasing dose of ⁹⁰Y-EB-RGD and complete eradication of tumor at high dose

Chen et al. J Nucl Med 2017; 58(4): 590-597

$\mathsf{EBRGD^{TM}}$ - Clinical

⁶⁴Cu-EBRGD (Glioblastoma targeting & potential therapy)

Healthy human volunteers

Three healthy volunteers (2 males and 1 female) underwent whole-body PET acquisitions at 1, 8 and 24 h time points after bolus injection of 64 Cu-EB-RGD (101.1±9.3, 92.5 -111 MBq).

1h8h24hRepresentative coronal PET image of healthy human volunteerinjected with ⁶⁴Cu-EB-RGD at 1, 8, and 24 h p.i.

Well Tolerated, no adverse events

Glioblastoma Multiforme Patient

Provided by Zhang J, et al, Peking Union Medical College Hospital (PUMCH)

Zhang et al. J Nucl Med 2020; 61(Suppl 1): 349

EBRGDTM (¹⁷⁷Lu-DOTA-EB-RGD) Conclusions

- Conjugation of EB to DOTA-RGD resulted in a significant increase in tumor uptake and tumor retention as shown with ¹⁷⁷Lu/⁹⁰Y/⁶⁴Cu
- A single dose of 177 Lu-EB-RGD (18.5 MBq) completely eradicated the tumors in PDX $_{\alpha\nu\beta3}$ NSCLC mouse model with no sign of tumor recurrence during the observation period
- ⁶⁴Cu-EB-RGD showed prolonged circulation half-life and enhanced tumor accumulation in GBM patient
- Concurrent blockade of PD-1/PD-L1 combined with ¹⁷⁷Lu-EB-RGD improves overall survival and long-term tumor control in a colorectal cancer model

Molecular Targeting Technologies, Inc. Advancing Precision Pharmaceuticals

Molecular Targeting Technologies, Inc.

Seeks Partners

Chris Pak, PhD President & CEO <u>cpak@mtarget.com</u>

John Farah, PhD Executive Advisor jmfarahjr@gmail.com O: +1-610-738-7938 M: +1-610-247-9060

www.evathera.com www.mtarget.com

• T •]

 $\mathbf{M} \cdot \mathbf{T}$

= 177 Lu, 90 Y, 67 Cu/ 64 Cu (NOTA chelator), & other possible radioisotopes 35

Appendix

- Potency of radiolabeled EBRGD IC₅₀~10⁻⁷M (74.1 nM [NOTA-EB-RGD) & 76.6 nM [DOTA-EB-RGD] see <u>Chen et al, 2017; Chen et al, 2017 Supplement Fig 2</u>
- Specificity of EBRGD is based on the cyclic pentapeptide, c(RGDfK):

<u>IC50</u>	<u>Integrin</u>
2.25 nM	ανβ3
55 nM	ανβ6
141 nM	α5β1
340 nM	ανβ5
5,200 nM	ανβ8
>10,000 nM	αllbβ3

see Kapp et al. A comprehensive evaluation of...ligands for RGD-binding integrins. Sci Rep 2017; 7: 39805

