MOLECULAR TARGETING TECHNOLOGIES, INC.

NEXT GENERATION TARGETED RADIOTHERAPEUTICS

Radiotherapeutics market will grow at 34% p.a. through 2033, one of the fastest growing sectors in oncology

"Radiopharmaceutical therapeutics are already transforming cancer care..."

- Christopher Boerner, CEO, BMS, Dec 26, 2023

Recent Radiotheranostics Deals						
Buyer	Target	Deal	Value (\$Bn)	Date		
AstraZeneca	Fusion	Acquisition	2.4	Mar-24		
BMS	RayzeBio	Acquisition	4.1	Dec-23		
Eli Lilly	POINT	Acquisition	1.4	Oct-23		
Roche	Peptidream	Acquisition	1.0	Sep-23		
RayzeBio	IPO	IPO	0.4	Sep-23		
Bayer	Bicycle	Asset Purch.	1.7	May-23		
Novartis	Bicycle	Asset Purch.	1.7	Mar-23		
Lantheus	POINT	Asset Purch.	1.8	Nov-22		

EvaThera Platform - targeting unmet GBM & NSCLC needs

DRUG	TARGET RECEPTOR	INDICATIONS	DEVELOPMENT STAGE	MARKET POTENTIAL
EBTATE® ¹⁷⁷ Lu-EB-DOTA-TATE	Somatostatin receptor type 2 (SSTR2)	GEP-NET	Preclincal studies showed superiority over other SSTR2 targeting PRRTs 60+ pts treated. Proved safety and higher ORR than ¹⁷⁷ Lu- DOTATATE	Best-in-class potential
		lodine resistant & Hürthle cell thyroid cancer (HTC)	Planned Phase I/II	Large
		Nasopharyngeal cancer (NPC)	Planned Phase I/II	Large in SE Asia
		Small cell lung cancer	Preclinical proof of concept	Good PK/PD may enable SCLC efficacy
	Integrin αvβ3	NSCLC - first in class	Strong preclinical efficacy in NSCLC, GBM & CRC.	First offective integrin ave
EBRGD TM ¹⁷⁷ Lu-EB-DOTA-RGD		GBM	Pilot GBM patient study showed robust, focal target engagement	targeting therapy with high potential in many cancers
		Colorectal cancer - first in class		
				3

EvaThera platform improves PK/PD vs. other PRRTs

EBTATE sustained tumor absorption in **NET** patients 0.08 Each line is EBTATE Albumin is TATE Albumin radioactivity Evans blue binds to albumin, an abundant in 25 blood extending blood half-life and protein increasing tumor uptake, separate 0.06lesions leading to improved efficacy Evans blue 🔿 %ID/g 0.04 0.02 Radioactive Linker Cancer Targeting Target Cell Compound Molecule Protein 0.00 100 150 50 Time (h)

EvaThera platform has unique advantages

Increased circulation half-life improves tumor uptake and retention

EBTATE shows a 7.9-fold tumor radiation count increase vs. ¹⁷⁷Lu-DOTATATE

TRT Type	Tumor permeability	Half-life	Manufacturing
Antibody conjugated radiotherapy	+	+++	+
Peptide receptor radionuclide therapy	+++	+	+++
EvaThera	+++	+++	+++

Zhang et al. J Nucl Med 2018; 59: 1699-1705

EBTATE: the first and only long-acting PRRT targeting SSTR2 NETs

- Improved PK/PD: Evans Blue-albumin binding motif results in a prolonged half-life and enhances tumor tissue absorption
- Superior anti-tumor efficacy: In preclinical models and clinical trials, EBTATE showed superior anti-tumor efficacy vs. ¹⁷⁷Lu-DOTATATE
- Clinical data support safety and efficacy: Clinical data from 60 NET patients shows:
 - 86% disease control after 3 years
 - o Good safety
 - Amino acid nephroprotection may not be necessary
- MTTI IP includes ²²⁵Ac and other radionuclides to 2037

HO₂S

Clinical Outcomes

A single low dose (20 mCi) of EBTATE reduces NET tumor size

Wang et al. Theranostics 2018; 8(12): 3308-3316

Long-Term Efficacy

EBTATE (3 cycles) achieved favorable 3-year follow-up results in 29 NET patients

⁶⁸Ga-DOTATATE PET/CT diagnostic tracking at 3-year follow-up

Jiang et al. Theranostics 2022; 12(5): 6437-6445

EBTATE Long-Term Efficacy in 29 Patients

⁶⁸Ga-DOTATATE PET/CT response (EORTC criteria)

Efficacy(%)	Group A 1.17 GBq n=12	Group B 1.89 GBq n=6	Group C 3.97 GBq n=14
Complete Response	0	3	0
Partial Response	50	50	42.9
Stable Disease	16.7	33.3	28.6
Progressive Disease	33.3	16.7	28.6
Disease Response Rate	50	50	42.9
Disease Control Rate	66.7	83.3	71.5

Patients seemed to tolerate ¹⁷⁷Lu-DOTA-EB-TATE well, even up to 3.97 GBq/cycle. The overall disease control rate, as well as the percentage decrease in tumor SUVmax, were highest with a 1.89 GBq dose, followed by 3.97 and 1.17 GBq.

Liu et al. J Nucl Med 2021; 62(3): 386-392

EBTATE was safe and well-tolerated in NET patients

Low, long-term toxicity (CTCAE 5.0) in 29 patients									
Toxicity	CTC-grade	Baseline	1st	cycle	2nd	cycle	3rd	cycle	Avg.Grade 3&4 AE (%)
			2 wks	4 wks	2 wks	4 wks	2 wks	4 wks	
Loukononia	Grade-1 & 2	4	6	5	6	10	6	4	0%
сечкорепіа	Grade-3 & 4	0	0	0	0	0	0	0	
Thrombocytopenia	Grade-1 & 2	0	3	3	2	4	2	3	12%
	Grade-3 & 4	0	0	2	1	1	1	0	13/0
Anemia	Grade-1 & 2	3	6	4	5	5	4	4	20/
	Grade-3 & 4	1	0	1	0	0	0	0	370
Nephrotoxicity	Grade-1 & 2	7	1	2	1	1	1	0	0%
	Grade-3 & 4	0	0	0	0	0	0	0	
Hepatotoxicity	Grade-1 & 2	5	1	3	2	1	1	0	20/
	Grade-3 & 4	0	0	1	0	0	0	0	5%

Low long torm tovisity (CTCAEEO) in 20 notionts

Jiang et al. Theranostics 2022; 12(5): 6437-6445

BENEFITS	¹⁷⁷ Lu-EBTATE	¹⁷⁷ Lu-DOTATATE		
Fewer doses	3 x 100 mCi cycles - shorter treatment duration, better compliance	4 x 200 mCi cycles		
Low radiation exposure	Cumulative 11.1 GBq	Cumulative 29.6 GBq		
IP	Composition of matter to 2037	Formulation		
Patient burden	May not require amino acid treatment	Mandated 4-hour pretreatment (>50% of patients with nausea/vomiting)		

EBTATE Overview

- 3-year follow-up showed stable disease with progression-free survival of 43 months after three cycles of ¹⁷⁷Lu-EBTATE (N=30 patients)
- Multiple cycles of escalating doses of EBTATE (N=32 patients) seem to be well tolerated and were effective in tumor control
- EBTATE should target Hürthle cell thyroid and nasopharyngeal cancers

Preclinical Results ²²⁵Ac, ¹⁷⁷Lu, ⁹⁰Y

Preclinical - xenograft tumor uptake	¹⁷⁷ Lu-EBTATE	¹⁷⁷ Lu-DOTATATE	
Non-small cell lung cancer (NSCLC)	80% ID/gram	4% ID/gram	
Pancreatic cancer AR42J	15.16 SUV	3.53 SUV	
Follicular thyroid (Hurthle cell)	4.8 SUV	0.28 SUV	
Preclinical - treatment response			
Non-small cell lung cancer (NSCLC)	100% at 18.5 MBq	0% at 18.5 MBq	
Pancreatic cancer - AR42J	Protects mice up to 24 days	Mice euthanized in 10 days due to tumor size	
Pancreatic cancer AR42J with ⁹⁰ Y	100% survival at 90 days with 3.7 & 7.4 MBq	No survival at 35 days with 7.4 MBq	

¹⁷⁷Lu-EBTATE: Superior tumor uptake

EBTATE uptake was significantly higher in a murine NSCLC model (A427-7) than ¹⁷⁷Lu–DOTATATE .

Bandara et al. Bioconjugate Chem 2018; 29(7): 2448-2454

(a & b) at 1 and 24 h post injection

(a)

(b)

(e & f) at 1 and 24 h post injection

¹⁷⁷Lu-EBTATE shrinks NSCLC tumors

Bandara et al. Bioconjugate Chem 2018; 29(7): 2448-2454

EBTATE vs. other SSTR2 analogs against pancreatic cancer

⁹⁰Y-EBTATE shows superior efficacy in pancreatic cancer

Tian et al. Theranostics 2018; 8:735-745

⁹⁰Y-EBTATE internalizes in colorectal cancer cells (HCT116)

²²⁵Ac-EBTATE

Strong antitumor effect in NCI-H524 xenograft (high SSTR2 expression SCLC)

2x 0.81 μ Ci (2x 30 kBq) administered 10 days apart for a total of 60 kBq (1.6 μ Ci) per mouse of [²²⁵Ac]Ac-EBTATE

EBRGD

EBRGDTM - unlocking $\alpha v\beta 3$ targeting in cancer treatment

Improved tumor uptake and retention

Strong *In vivo* efficacy in NSCLC and CRC

High promise in GBM Conjugation of EB to DOTA-RGD resulted in significant increase in tumor uptake and internalization & retention, as demonstrated with ¹⁷⁷Lu/⁹⁰Y/⁶⁴Cu.

- In a PDX α_vβ₃ NSCLC mouse model, a single dose of ¹⁷⁷Lu-EB-RGD completely eradicated tumors with no sign of tumor recurrence.
- Concurrent blockade of PD-1/PD-L1 immunotherapy combined with ¹⁷⁷Lu-EB-RGD improved overall survival and long-term tumor control in a mouse colorectal cancer model.
- ⁹⁰Y-EB-RGD increased blood half-life, enhanced glioblastoma multiforme (GBM) tumor uptake, and improved survival in murine GBM model.
- ⁶⁴Cu-EB-RGD demonstrated strong target engagement in GBM patients.

N=N

Potential in a variety of cancers

- αvβ3 integrin is over-expressed in many cancers and is a well-known marker for angiogenesis.
- EBRGD[™] is designed to overcome past therapy failures and unlock potential of αvβ3 targeting in cancer treatment.

NH

RGD tracer studies validated that integrin $\alpha v \beta 3$ is over expressed in most cancers

- GBM
- NSCLC
- Breast cancer
- Melanoma
- Sarcoma
- RCC
- SCCHN
- Glioma
- Musculoskeletal cancers
- Rectal Cancer
- Bone metastases

⁶⁴Cu-EBRGD – Data from GBM patients demonstrates robust target engagement

Healthy human volunteers

Three healthy volunteers (2 males and 1 female) underwent whole-body PET acquisitions at 1, 8 and 24 h time points after bolus injection of 64 Cu-EB-RGD (101.1±9.3, 92.5 -111 MBq).

1h8h24hRepresentative coronal PET image of healthy human
volunteer injected with 64Cu-EB-RGD at 1, 8, and 24 h p.i.Well Tolerated, no adverse events

Glioblastoma Multiforme Patient Axial PET slices of glioblastoma patient injected with ⁶⁴Cu-EB-RGD at different time points p.i. 1 h 8 h 12 h Target engagement T1W MRI T1W with contrast Cu-64-NOTA-EB-RGD T2W MRI PET/CT 24h p.i. Cu-64-NOTA-EB-RGD in GBM patients **Immunohistology of** integrin $\alpha_{v}\beta_{3}$ levels in the Tumor SUV tumor Background SUV Tumor/ Large signal/background ratio shows potential for therapeutic efficacy Quantitative results of Cu-64-NOTA-EB-RGD over time

a.B. levels

Zhang et al. J Nucl Med 2020; 61(Suppl 1): 349ca

Preclinical Results EBRGD

¹⁷⁷Lu-EBRGD vs ¹⁷⁷Lu-RGD SPECT imaging in $\alpha_v\beta_3$ positive PDX-NSCLC EBRGD's longer residence time significantly improves uptake

High $\alpha v\beta 3$ expressors

Low $\alpha v \beta 3$ expressors

¹⁷⁷Lu-EBRGD improved survival of αvβ3+ PDX (NSCLC) mice

Zhao et al. Mol Cancer Ther 2020; 19(10): 2034-2043

⁹⁰Y-EBRGD improved GBM survival: complete tumor eradication in mice

 $M \cdot T \cdot T \cdot I$

Chen et al. J Nucl Med 2017; 58(4): 590-597

EBRGD enhances immunotherapy efficacy in colorectal cancer

Chen et al. Theranostics 2019; 9(25): 7948-7960

 $\mathbf{M} \cdot \mathbf{T} \cdot \mathbf{T} \cdot \mathbf{J}$

¹⁷⁷Lu-EBRGD, a new, rationally designed theranostic

- Delivers strong tumor uptake, internalization & retention in ανβ3νΗ H expressing tumors
- A single dose completely eradicated tumors in an NSCLC mouse model
- Concurrent blockade of a checkpoint inhibitor with⁰¹⁷⁷Lu-EB-RGD improved overall survival and tumor control in a mouse CRC model
- ⁹⁰Y-EBRGD improved survival in murine GBM model
- ⁶⁴Cu-EBRGD demonstrated focal uptake in GBM patients

NH

 H_2N

Contact Us

Chris Pak, PhD

President & CEO

Email: cpak@mtarget.com

www.mtarget.com

www.evathera.com

