MTTI's Radiopharmaceuticals

A NEW GENERATION OF TARGETED RADIOTHERAPEUTICS (TRT)

Chris Pak

cpak@mtarget.com

A long-acting, more effective TRT platform

R

TRTs like Lutathera have short biologic half-lives, limiting efficacy

Evans blue (EB) – extends blood half-life increasing tumor uptake, improving efficacy.

Transforming radiotherapy with an Evans blue (EB) moiety

• EB binds to albumin, abundant in the blood (50 mg/mL), resulting in a longer circulatory half-life

- Each albumin binds 8-14 molecules of EB
- Better tissue absorption and retention enhance treatment

Significantly lower isotope use while maintaining efficacy and safety, improves costs and health economics

Evans blue (EB) Advantages - transforming radiotherapy

	¹⁷⁷ Lu-EBTATE vs. ¹⁷⁷ Lu-DOTA-TATE
Circulatory half-life	Binds to albumin, an abundant blood protein, resulting in a Clears rapidly longer half-life
Tumor uptake in HCT116 CRC tumor model at 24H	78.8% ID/g 3% ID/g
Tumor retention in NET patients	0.049MBq-h/MBq/g 8 Fold greater!
Tumor remission in AR42J pancreatic cancer tumor model	Complete

EB impact: Greater retention in HCT116 CRC tumor (Preclinical)

¹⁷⁷Lu-EBTATE (78.8% ID/g) vs ¹⁷⁷Lu-DOTA-TATE (3%ID/g) at 24 h

EB impact: Improved survival in AR42J, pancreatic cancer (Preclinical)

¹77Lu-EBTATE (complete tumor remission) vs. TATE analogs (no remission)

DOTA-EB-TATE is superior to other somatostatin analogues in the treatment of SSTR2-expressing tumors

EB improves PK/PD in patients

EBTATE sustained tumor absorption in NET patients

EBTATE shows a 7.9-fold tumor radiation count increase vs 177Lu-DOTA-TATE

EB Platform - targeting unmet medical needs

DRUG	TARGET RECEPTOR	INDICATIONS	DEVELOPMENT STAGE		MARKET POTENTIAL		
		GEP-NET	Preclincal studies showed superiority over other SSTR2 targeting PRRTs	Best-in-class potential	~430,000 cases (global)		
EBTATE® Somatostatin receptor 177 Lu-EB-DOTA-TATE type 2 (SSTR2)		60+ patients treated. Proved safety and efficacy.	\$1 Bn				
	Radioactive iodine- resistant/refractory (RAI-R) & Hürthle cell (HTC) thyroid cancers	Approved for Phase I/II	\$500M	~140,000 cases (global)			
	Nasopharyngeal cancer (NPC)	Approved for Phase I/II \$500M		~130,000 cases (primarily SE Asia)			
		Small cell lung cancer	Ready for Phase I	\$500M	~164,000 cases (global)		
²²⁵ Ac-EB-DOTA-TATE	SSTR2	GEP-NET	Target Phase I in 2025	\$1Bn	~430,000 cases (global)		
AC-EB-DOTA-TATE	351KZ	Small cell lung cancer	raiget Filase IIII 2025	\$500M	~130,000 cases (primarily SE Asia)		
EBRGD TM Integrin ανβ3	NSCLC - first in class	Strong preclinical efficacy in NSCLC, GBM & CRC.					
	Integrin ανβ3	GBM	Pilot GBM patient study showed robust, focal target engagement	\$7Bn	~2M cases (global)		
		Colorectal cancer - first in class					

A single low dose (20 mCi) of EBTATE reduces NET tumor size

Long-Term Efficacy

EBTATE (3 cycles) achieved favorable 3-year follow-up results in 29 NET patients

⁶⁸Ga-DOTATATE PET/CT diagnostic tracking at 3-year follow-up

Jiang et al. Theranostics 2022; 12(5): 6437-6445

EBTATE was safe and well-tolerated in NET patients

Jiana et al. Theranostics 2022; 12(5): 6437-6445

Low, long-term toxicity (CTCAE 5.0) in 29 patients

Toxicity	CTC-grade	Baseline	1st	cycle	2nd cycle		cycle 3rd cycle		Avg.Grade 3&4 AE (%)	
			2 wks	4 wks	2 wks	4 wks	2 wks	4 wks		
Leukopenia	Grade-1 & 2	4	6	5	6	10	6	4	0%	
Leukopeilia	Grade-3 & 4	0	0	0	0	0	0	0	070	
Thrombocytoponia	Grade-1 & 2	0	3 3 2 4 2 3		13%					
Thrombocytopenia	Grade-3 & 4	0	0	2	1	1	1	0	15%	
Anemia	Grade-1 & 2	3	6	4	5	5	4	4	3%	
Allelilla	Grade-3 & 4	1	0	1	0	0	0	0	570	
Nonbrotovicity	Grade-1 & 2	7	1	2	1	1	1	0	00/	
Nephrotoxicity	Grade-3 & 4	0	0	0	0	0	0	0	0%	
Hepatotoxicity	Grade-1 & 2	5	1	3	2	1	1	0	20/	
	Grade-3 & 4	0	0	1	0	0	0	0	3%	

EBTATE Clinical Benefits

safe & effective at 40% radiation exposure

CLINICAL BENEFIT	¹⁷⁷ Lu-EBTATE	vs. ¹⁷⁷ Lu-DOTA-TATE*
Lower cumulative radiation exposure	Cumulative 11.1 GBq	Cumulative 29.6 GBq
Fewer doses	3 cycles x 100mCi	4 cycles x 200mCi
Higher ORR	43-50%	43%
Comparable disease control	86.1% after 3Y	79.4-88%
Stronger IP	Composition of matter to 2037	Formulation patent
Toxicity/admin burden	Doesn't require amino acid pretreatment	Mandated amino acid pretreatment

^{*} Lutathera plus octreotide LAR. Earlier Lutathera monotherapy studies demonstrated ORR of 13-19%. EBTATE shown here is monotherapy

Long acting [225Ac]Ac-EBTATE is highly efficacious against somatostatin receptor-2-positive neuroendocrine tumors

- Two doses of ²²⁵Ac-EBTATE at 34 kBq, 10 d apart, were well tolerated biochemically and hematologically for 28 d
- ²²⁵Ac-EBTATE (2x 30 kBq, 10 d apart), in NCH-H524 [small cell lung cancer] showed 80% complete remission, 100% survival (d83) and 105.6% TGI, 2-fold more than ²²⁵Ac-DOTATATE on d20
- 225Ac-EBTATE (2x 30 kBq, 10 d apart) in NCH-H727 [lung/carcinoid] led to partial responses with 64.4% TGI on d28
- Using 60% less activity of ²²⁵Ac-EBTATE is as effective as ²²⁵Ac-DOTATATE

EB Platform IP

- "Chemical conjugates of Evans blue derivatives and their use as radiotherapy and imaging agents"
- Approved Countries:
 - o US,(US 10,696,631 B2),
 - o Europe (EP 3455 206 B1),
 - o China (CN 109153641B),
 - o Japan (JP6946342B2),
 - Singapore (SG11201809982RA)
- Patent life: 2037
- Licenses: exclusive global license from the National Institutes of Health includes conjugating any new targeting peptides with EB.

EB Summary

- Transforming radiotherapy with Evans blue(EB)
 - Greater ¹⁷⁷Lu-EBTATE uptake
 - Complete remission in AR42J pancreatic model
 - 8-fold greater retention in NET patients
 - Similar safety to ¹⁷⁷Lu-DOTATATE with 40% of the radioactivity
- ²²⁵Ac-EBTATE showed 80% complete remission, 100% survival and 105.6% TGI, 2-fold more than ²²⁵Ac-DOTATATE

EBRGD

EBRGD targets $\alpha v\beta_3$, an integrin with multiple roles in cancer

ανβ3 in every step of tumor progression:

- tumorigenesis
- epithelial- mesenchymal transition (EMT)
- bone metastasis
- metabolic reprogramming
- drug resistance
- stemness
- angiogenesis
- immune escape

αvβ3 advantage as cancer target over other integrins

- ανβ3 has low or no expression in normal tissues
- Expression level increases in tumors and correlates with tumor aggressiveness
 - \circ Some integrins, such as $\alpha_2\beta_1$, decrease in tumor cells
- αvβ3 interacts with growth factors highly expressed in tumors
 - \circ $\alpha v\beta_3$ and FGFR interaction induces angiogenesis downstream of FGF binding, and $\alpha v\beta s$ and VEGFR2 promote VEGF-induced angiogenesis
- ανβ3 is overexpressed in tumors with higher frequency than other integrins

Tumour type	Integrins expressed*	Associated phenotypes
Melanoma	ανβ3 and $α5β1$	Vertical growth phase 35,172-174 and lymph node metastasis 173,175
Breast	α6β4 and $ανβ3$	Increased tumour size and grade 176 , and decreased survival 177 ($\alpha6\beta4$). Increased bone metastasis $^{36-38,64}$ ($\alpha\nu\beta3$)
Prostate	ανβ3	Increased bone metastasis ³⁹
Pancreatic	ανβ3	Lymph node metastasis ⁴⁰
Ovarian	α4β1 and ανβ3	Increased peritoneal metastasis $(\alpha 4\beta 1)$ and tumour proliferation $(\alpha \nu \beta 3)$
Cervical	α ν $β$ 3 and $α$ ν $β$ 6	Decreased patient survival 41,180
Glioblastoma	ανβ3 and $ανβ5$	Both are expressed at the tumour–normal tissue margin and have a possible role in invasion
Non-small-cell lung carcinoma	α5β1	Decreased survival in patients with lymph node- negative tumours 182
Colon	ανβ6	Reduced patient survival 109

ανβ3 integrin is overexpressed in >76% NSCLC patients*

 ανβ3 expressed in tumor and not in normal cells

 ανβ3 correlates with tumor grade, progression, metastases and advanced clinical stage

*Boger et al. Virchows Arch. 2014;464(1):69-78.; Echavidre et. al., Pharmaceutics. 2022;14(5):1053;

Jin et al. PLoS One. 2012;7(10):e48575, Kariya et. al. Comm Biol 2021;4:490.

$\alpha \nu \beta 3$ overexpressed in many cancers

- GBM
- NSCLC
- Breast cancer
- Melanoma
- Sarcoma
- RCC
- SCCHN
- Glioma
- Musculoskeletal cancers
- Rectal Cancer
- Bone metastases

ανβ3 overexpressed in neovascular cells & 60% of GBM patients*

- ανβ3 integrin has low or no expression in normal tissues, overexpressed in many tumors
- RGD based PET tracer detects
 100% primary lesions in cancer
- ανβ3 was found in **neovascular** cells and **tumor cells**

Brain Pathology 2008;18:378; Theranostics 2016;6:78, J Neuropath Exp Neur 2013;72:194

ανβ3 has elevated expression in GBM tumor vessels and parenchymal region

Clinical development targeting ανβ3

Merck KGaA spent >10 years developing a targeted therapy for ανβ3 in GBM

- Cilengitide, a peptide $\alpha v \beta 3$ antagonist, failed in a Phase 3 GBM trial
- Although safe, cilengitide did not improve overall survival
- Proposed rationale for the failure:
 - Signaling based therapy is not potent enough to kill cancer cells
 - Short residence time is insufficient

EBRGD may overcome these challenges.

Clinical development targeting ανβ3

Novartis began a Phase I trial with an $\alpha \nu \beta_3$ and $\alpha \nu \beta_5$ dual targeting TRT (116 pts)

- A Phase I, Open-label, Multi-center Study to Evaluate the Safety, Tolerability, Dosimetry and Preliminary Activity of [¹⁷⁷Lu]Lu-FF₅8 in Patients (N=116)With Selected Advanced Solid Tumors (NCT₀₅₉₇₇₃₂₂)
- FF58 is an $\alpha\nu\beta$ 3 and $\alpha\nu\beta$ 5 dual targeting molecule without the albumin binding motif

MTTI demonstrated RGD without Evans blue is ineffective in tumor control while EBRGD is effective in preclinical models.

EB Impact: Improved survival in GBM and NSCLC (Preclinical)

¹⁷⁷Lu & ⁹⁰Y EBRGD vs. RGD analogs

EBRGD is designed to overcome $\alpha v \beta_3$ therapy failures

A validated target

- $\alpha \nu \beta_3$ is required for angiogenesis and tumorigenesis in cancer
- ανβ3 therapy has been challenging

EBRGD advantage

• EBRGD extends *in vivo* circulatory half-life and tumor residence time, enabling effective payload delivery

Strong *in vivo* efficacy

• Convincing efficacy in $\alpha\nu\beta3$ positive NSCLC, CRC and GBM model

⁶⁴Cu-EBRGD – robust target engagement in GBM patients

Glioblastoma Multiforme Patient

Axial PET slices of glioblastoma patient injected with ⁶⁴Cu-EB-RGD at different time points p.i.

Signal/background ratio increased over time

EBRGD Opportunities

Multiple cancers express Integrin $\alpha_v \beta_3$ therapeutic targets:

- Overexpressed in almost all metastatic cancers
- ~ 1 million US patients annually

5-YEAR SURVIVAL 2011-2017

2021 US INCIDENCE (est.)

Summary

- $\alpha \nu \beta 3$ is overexpressed in NSCLC, CRC, GBM and many other cancers
- EBRGD demonstrated:
 - ✓ efficacy in NSCLC, CRC and GBM models
 - ✓ tumor eradication in high expressing PDX $\alpha\nu\beta_3$ +
 - ✓ synergistic effect with immunotherapy
 - ✓ target engagement and sustained tumor absorption in GBM patients

EBRGD IND-enablement update

- Completed GLP toxicology and GMP manufacturing (30,000 doses in cGMP storage)
- Demonstrated acceptable radiolabeling
- Clinical protocols and sites identified for NSCLC and GBM
- Pilot study completed (3 healthy, 2 GBM pts)
- Target IND submission 2025

Pipeline

PRODUCT	TARGET	INDICATION	PRECLIN	PHASEI	PHASE II	PHASE III	MARKET
	THERAPE	UTICS					
Rabies mAb	Rabies antigen	Rabies		OUTLICEN	SED - LAUN	CHED 2022	
BPRDP056	Phosphatidylserine	Multiple cancers	OUTLICENSED				
	SSTR2	Neuroendocrine tumors	PHA	SE I/II (n=60	pts)		
SSTR2 SSTR2		RAI-R & Hürthle Cell thyroid cancers	PHA	SE I/II			
		Nasopharyngeal cancer	PHAS	SE IB/II			
225Ac-EBTATE° SSTR2 SSTR2	SSTR2	Small cell lung cancer	Q1 2	025			
	SSTR2	Neuroendocrine tumors	Q2 2	2025			
177. san ca TM	integrin ανβ ₃	Non-small cell lung cancer	Q2 2	025			
177 Lu-EBRGD TM integrin ανβ ₃	integrin ανβ ₃	Glioblastoma multiforme	PILOT (n=5 pts)	Phase I/II	Q2 2025	
DIAGNOSTICS							51
TDURA	Cell death	Colorectal cancer	DOSIMETR	Y (n=6 pts)		Ni.	
CypH-11 Spray	NIR guided surgery	Colorectal & peritoneal cancers	PHASE I	Q3 2025			

MTTI Team

Deep industry experience and record of drug approval

Chris Pak, PhD - President & CEO

Scotgen Biopharmaceuticals

Jeffrey Mattis, PhD, - SVP Regulatory Affairs

Bryan Gray, PhD, - SVP Product Development

SmithKline Beecham

ZYNAXIS PTI RESEARCH

Jianwei Xu, PhD - CBO

McKinsey & Company

John Farah, PhD - Executive Advisor

Michael Silvon PhD, MBA - SVP Business Development

Clinical team/advisors

Jerry Huang, MD PhD - SVP **Clinical Development**

Richard Wahl, MD - Clinical Advisor

Chairman of the Department of Radiology and Director of the Mallinckrodt Institute of Radiology at Washington University School of Medicine

Daniel Pryma, MD - Clinical Advisor

Chief, Division of Nuclear Medicine & Clinical Molecular Imaging

Appendices:

Preclinical studies

- ¹⁷⁷Lu-EBRGD
 - o NSCLC (PDX)
 - o GBM (U87MG)
 - o CRC (MC38)
- ²²⁵Ac-EBTATE

Establishment of patient-derived xenografts in NSCLC (PDX-NSCLC)

IHC	NSCLC	PDX-NSCLC
CK7	+	+
TTF-1	+	+
Napsin-A	+	+
P63	+	+
SY	-	-
CK5/6	-	_
Ki-67%	70%	70%

¹⁷⁷Lu-EB-RGD SPECT imaging in $\alpha_v \beta_3$ -positive PDX-NSCLC

IHC:

 $\alpha_v \beta_3$ high expression

 177 Lu-EB-RGD vs. 177 Lu-RGD SPECT imaging in $\alpha_{\rm v}\beta_{\rm 3}$ -positive PDX-NSCLC

177 Lu-EBRGD resulted in tumor volume regression and improved survival of $\alpha\nu\beta_3+$ PDX (NSCLC) mice

Day 0 Group A: Saline

Day 0 Group E: ¹77Lu-EB-RGD (18.5 MBq)

Day 0 Group C: ¹77Lu-RGD (29.6 MBq)

Day 0 Group D: ¹77Lu-EB-RGD (29.6 MBq)

Group A

2100
Group B

1500
Group C

Group D

1200
00
4 8 12 16 20 24 28 32 36 40 44 48 52

Days after treatment

A single dose of 177 Lu-EB-RGD (18.5 MBq) completely eradicated tumors in PDX $\alpha_{v}\beta_{3}$, with no sign of tumor recurrence during the observation period

¹⁷⁷Lu-EBRGD vs ¹⁷⁷Lu-RGD SPECT imaging in $\alpha_{\nu}\beta_{3}$ positive PDX-NSCLC

EBRGD's longer residence time significantly improves uptake

High $\alpha v \beta 3$ expressors

^{9°}Y-EBRGD dose escalation: GBM tumor volume regression, improved survival and complete eradication of tumor at high dose in mice

EBRGD enhances immunotherapy efficacy in colorectal cancer

¹⁷⁷Lu-EBRGD/ anti-PD-L1 enhance anti-tumor efficacy

• This therapeutic combination may be a promising approach to treating metastatic tumors in which TRT can be used.

• Clinical translation of the result would suggest that concurrent rather than sequential blockade of the anti-PD-L1 combined with TRT improves overall survival and long-term tumor control.

Long acting [²²⁵Ac]Ac-EBTATE is highly efficacious against somatostatin receptor-2-positive neuroendocrine tumors

• Fabrice N. Njotu1, Humphrey Fonge1*et. al,.

Presented in 2024 SNMMI

*University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan; and Molecular Targeting Technologies, Inc. West Chester, Pennsylvania

Biodistribution and pharmacokinetic of [225Ac]Ac-EBTATE in healthy BALB/c mice.

Therapy in NCH-H524 (SCLC).

Average tumor growth

Kaplan Meier survival

Average body weights

²²⁵Ac-EBTATE IND-enablement update

- Completed GLP toxicology and GMP manufacturing
- Clinical protocols and sites identified for NET and SCLC
- Target IND submission 2025

Conclusions

- Two doses of ²²⁵Ac-EBTATE at 34 kBq, 10 d apart, were well tolerated biochemically and hematologically for 28 d
- ²²⁵Ac-EBTATE (2x 30 kBq, 10 d apart), in NCH-H524 showed 80% complete remission, 100% survival (d83) and 105.6% TGI, 2-fold more than ²²⁵Ac-DOTATATE on d20
- ²²⁵Ac-EBTATE (2x 30 kBq, 10 d apart) in NCH-H727 led to partial responses with 64.4% TGI on d28
- Using 60% less activity of ²²⁵Ac-EBTATE is as effective as ²²⁵Ac-DOTATATE